Dimension Reduction by Mutual Information Feature Extraction

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Dimension Reduction by Mutual Information Feature Extraction

During the past decades, to study high-dimensional data in a large variety of problems, researchers have proposed many Feature Extraction algorithms. One of the most effective approaches for optimal feature extraction is based on mutual information (MI). However it is not always easy to get an accurate estimation for high dimensional MI. In terms of MI, the optimal feature extraction is creatin...

متن کامل

Dimension Reduction by Mutual Information Discriminant Analysis

In the past few decades, researchers have proposed many discriminant analysis (DA) algorithms for the study of high-dimensional data in a variety of problems. Most DA algorithms for feature extraction are based on transformations that simultaneously maximize the between-class scatter and minimize the withinclass scatter matrices. This paper presents a novel DA algorithm for feature extraction u...

متن کامل

Feature Extraction by Non-Parametric Mutual Information Maximization

We present a method for learning discriminative feature transforms using as criterion the mutual information between class labels and transformed features. Instead of a commonly used mutual information measure based on Kullback-Leibler divergence, we use a quadratic divergence measure, which allows us to make an efficient non-parametric implementation and requires no prior assumptions about cla...

متن کامل

Feature Extraction and Efficiency Comparison Using Dimension Reduction Methods in Sentiment Analysis Context

Nowadays, users can share their ideas and opinions with widespread access to the Internet and especially social networks. On the other hand, the analysis of people's feelings and ideas can play a significant role in the decision making of organizations and producers. Hence, sentiment analysis or opinion mining is an important field in natural language processing. One of the most common ways to ...

متن کامل

Computationally Efficient Sufficient Dimension Reduction via Squared-Loss Mutual Information

The purpose of sufficient dimension reduction (SDR) is to find a low-dimensional expression of input features that is sufficient for predicting output values. In this paper, we propose a novel distribution-free SDR method called sufficient component analysis (SCA), which is computationally more efficient than existing methods. In our method, a solution is computed by iteratively performing depe...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: International Journal of Computer Science and Information Technology

سال: 2012

ISSN: 0975-4660

DOI: 10.5121/ijcsit.2012.4302